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Proteins have four structural categories. The primary structure is the amino-acid sequence of the polypeptide
chain. The secondary structure is the conformation, representing of the backbone (α-helix or  β-sheet). The
knowledge of protein structure has a paramount theoretical and practical importance (e.g. cancer disease)
and a huge effort of research was devoted to this subject. Despite the fact that several methods were developed
for protein secondary-structure prediction, there are no consensuses of their results. In this paper was proposed
an new, original, method to investigate the influence of the number of amino acids and the percentage
contents in the twenty amino acids  for the prediction of protein secondary-structure, respectively  Monte
Carlo simulation using a multilayer neural networks. The method is very promising in connection with the
use of large data bases.
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The knowledge of protein structure has a paramount
theoretical and practical importance (e.g. cancer disease)
and a huge effort of research was devoted to this subject.

Proteins are complex polymers composed of a series of
amino acids attached by peptide bonds. There are 20
different amino acids present in proteins, each with a
different residual group R:
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Amino acids fall into five categories: aliphatic, nonpolar,
aromatic, polar and charged. Table 1 lists the twenty amino
acids in order of ascending hydrophobicity, measured on
the basis of solubility in various solvents [2].

Proteins have four structural categories [2]. The primary
structure is the amino-acid sequence of the polypeptide
chain. The secondary structure is the conformation,
representing of the backbone (α-helix or β-sheet). The
tertiary structure is the three-dimensional conformation,
representing how the secondary structure folds to obtain
the most favorable thermodynamic state, with hydrophobic
residues on the interior and hydrophilic residues on the
exterior. The quaternary structure is the arrangement of
the aggregation of several polypeptide chains.

The α-helix is a tight coil with 3.6 amino acids per turn,
stabilized by hydrogen bonds between the NH and CO

The properties of the residual groups, in conjunction
with their structural positions, define the solution properties
of the protein. The structures of the twenty amino acids
[1] are presented in figure 1.

Fig. 1. The structure of the twenty amino acids from proteins [1]



REV. CHIM. (Bucureºti) ♦ 59 ♦ Nr. 2♦ 2008200

groups. All hydrogen bounds in the α-helix point the same
direction, with the NH groups towards the N-terminal side
and the CO groups towards C-terminal side. Polarity
differences between the CO and NH groups cause an
overall dipole moment along the helical axis. The helix
structure occurs most often at the protein’s surface, when
on side of the α-helix is hydrophobic and the other
hydrophilic [3]. In figure 2 is presented [4] a side view of
an α-helix of alanine residues in atomic detail. The protein
chain runs upwards, i.e., its N-terminus is at the bottom
and its C-terminus at the top of the figure.

The β-sheet conformation contains amino acid strands,
approximately 5 to 10 units in length, and aligned side by
side [3]. The structure exists in either parallel or antiparallel
form. In parallel form, all strands run in the same direction,
while in the antiparallel form, the strands alternate. Unlike

the α-helix, the hydrogen bounds between the NH and CO
groups alternate directions in both β-sheet forms.
Therefore, no hydrophobic or hydrophilic side exists at the
protein surface. In figures 3.a and 3.b are presented [4]
the β-sheet secondary structures of proteins. The hydrogen
bonding patterns are represented by dotted lines, in an
antiparallel β-sheet (fig. 3.a) and in parallel β-sheet (fig.
2.b).

Usual methods for protein secondary-structure prediction
[4]

Early methods of secondary-structure prediction were
based on the helix- or sheet-forming propensities of
individual amino acids, sometimes coupled with rules for
estimating the free energy of forming secondary structure
elements. Such methods are typically ~60% accurate in

Table 1
THE AMINO ACIDS CHARACTERISTICS

Fig. 3a. Antiparallel  β-sheetFig. 2. A α-helix of alanine residues Fig. 3b.Parallel β-sheet
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predicting which of the three states (helix/sheet/coil) a
residue adopts. A significant increase in accuracy (to nearly
~80%) was made by exploiting multiple sequence
alignment; knowing the full distribution of amino acids that
occurs at a position (and in its vicinity, typically ~7 residues
on either side) throughout evolution provides a much better
picture of the structural tendencies near that position. For
illustration, a given protein might have a glycine at a given
position, which by itself might suggest a random coil there.
However, multiple sequence alignment might reveal that
helix-favoring amino acids occur at that position (and
nearby positions) in 95% of homologous proteins spanning
nearly a billion years of evolution. Moreover, by examining
the average hydrophobicity at that and nearby positions,
the same alignment might also suggest a pattern of residue
solvent accessibility consistent with an α-helix. Taken
together, these factors would suggest that the glycine of
the original protein adopts α-helical structure, rather than
random coil.

Secondary-structure prediction methods are
continuously benchmarked, e.g., in the EVA (http://
cubic.bioc.columbia.edu/eva/sec/res_sec.html)
experiment. Based on approx. 270 weeks of testing, the
most accurate methods at present are:

-PsiPRED (http://bioninf.cs.ucl.ac.uk./psipred/psiforum.
html);

-PROF (www.predict_protein.org);
-SABLE = protein structure prediction server used to

predict Solvent AccessiBiLitiEs secondary structure and
transmembrane domains for proteins of unknown
structure  (http://sable.cchmc.org).

Interestingly, it does not seem to be possible to improve
upon these methods by taking a consensus of them. The
chief area for improvement appears to be the prediction
of β-strands; residues confidently predicted as β-strand are
likely to be so, but the methods are apt to overlook some
β-strand segments.

Chou-Fasman method for protein secondary-structure
prediction [5]

Chou-Fasman method of secondary structure prediction
depends on assigning a set of prediction values to a residue
and then applying a simple algorithm to those numbers
presented in table 2.

The algorithm contains the following steps:
Assign all of the residues in the peptide the appropriate

set of parameters.
Scan through the peptide and identify regions where 4

out of 6 contiguous residues have P(a-helix) > 100. That
region is declared an alpha-helix. Extend the helix in both
directions until a set of four contiguous residues that have
an average P(a-helix) < 100 is reached. That is declared
the end of the helix. If the segment defined by this
procedure is longer than 5 residues and the average P(a-
helix) > P(b-sheet) for that segment, the segment can be
assigned as a helix.

Repeat this procedure to locate all of the helical regions
in the sequence.

Scan through the peptide and identify a region where 3
out of 5 of the residues have a value of P(b-sheet) > 100.
That region is declared as a beta-sheet. Extend the sheet
in both directions until a set of four contiguous residues
that have an average P(b-sheet) < 100 is reached. That is
declared the end of the beta-sheet. Any segment of the
region located by this procedure is assigned as a beta-sheet
if the average P(b-sheet) > 105 and the average P(b-sheet)
> P(a-helix) for that region.

Any region containing overlapping alpha-helical and
beta-sheet assignments are taken to be helical if the
average P(a-helix) > P(b-sheet) for that region. It is a beta
sheet if the average P(b-sheet) > P(a-helix) for that region.

To identify a bend at residue number j, calculate the
following value

                       p(t) = f(j)f(j+1)f(j+2)f(j+3)

where the f(j+1) value for the j+1 residue is used, the
f(j+2) value for the j+2 residue is used and the f(j+3) value
for the j+3 residue is used. If: (1) p(t) > 0.000075; (2) the
average value for P(turn) > 1.00 in the tetrapeptide; and
(3) the averages for the tetrapeptide obey the inequality
P(a-helix) < P(turn) > P(b-sheet), then a beta-turn is
predicted at that location.

Protein secondary-structure prediction by neural networks
Several types of methods are used to combine all the

available data to form a 3-state prediction, including neural
networks [3, 6], hidden Markov models and support vector
machines.

Table 2
CHOU-FASMAN PARAMETERS
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In this work was used and developed the protein
secondary-structure prediction with neural networks
proposed by Baughman and Liu [3]. It was used the four
structural classes of proteins, as defined by Chou and
Fasman [5], as output categories:

-α proteins: predominantly α-helix regions with little or
no β-sheets;

-β proteins: predominantly β-sheets with minimal or no
β-helix regions;

-α + β proteins: α-helices and α-sheets clustered in
separate domains;

-α/β proteins: alternating α-helices and β-sheets.
It was used the protein database from Chou and Fasman

[5], listed in table 3.a and 3.b which contains 19α  proteins,
15β proteins,  14α +β proteins, and and 16 α/β proteins.

The training data for the classification neural networks
consisted in the matrix file protcls.nna given by Baughman
and Liu [3]. The rows of this matrix correspond to the
proteins from table 3.a and 3.b, whilst the columns contain
the normalized number of amino acids in the protein, the
percentage contents in the twenty amino acids, and the
codes of the four protein classes as follows:

{1 0 0 0} : α proteins
{0 1 0 0} : β proteins
{0 0 1 0} : α + β proteins
{0 0 0 1} : α /β proteins

According  to this structure of the training data, the input
layer of the neural network has 22 neurons (corresponding
to the normalized number of amino acids, the percentage
contents in the twenty amino acids and the bias node).
The output layer of the neural network contains four
neurons in correspondence with the codes of the four
protein classes. Similar with Baughman and Liu [3], the
best results in the training of the neural network was
reached when one hidden layer with 30 nodes were used.
For sigmoid transfer function and δ-learning rule with
cumulative update of interneuron connections weights,
after 100,000 learning iterations, the network response was
a perfect correct classification.

Monte Carlo simulation
Using the classification neural network, the influence

of the number of amino acids and the percentage contents
in the twenty amino acids on the affiliation to a protein
class was investigated by Monte Carlo simulation using
CRYSTAL BALL®. During a simulation, Crystal Ball ranks
the assumptions according to their importance to each
forecast cell and indicate which assumptions are the most
important or least important in the model [7]. The
assumptions for the signal variables (respectively the inputs
of neural network) have a stochastic uniform distribution
between minimum and maximum values. The forecasts
correspond to the outputs of neural network, respectively

Table 3a
CHOU-FASMAN PROTEIN DATABASE
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Table 3.b.
CHOU-FASMAN PROTEIN DATABASE

Fig. 4. Sensitivity chart for α protein structure
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the codes of the four protein classes. It was used 500,000
simulation trials. The corresponding results are given by
Crystal Ball sensitivity charts. In figure 4 is presented one
of these sensitivity charts, respectively for α protein
structure. Negative values of a percentage contribution to
variance indicate an inverse proportionality. The complete
results of the Monte Carlo sensitivity analysis are given in
table 4. Here are also presented the simulation results
without consideration of the influence of the normalized
number of amino acids.

Results and Discussion
According to the results presented in table 4, a high

number of amino acids in protein molecule will be very
favorable for an α /β protein structure and strong no
favorable for an á protein structure. The number of amino
acids has a moderate negative influence to α + β protein
structure and a small negative influence to β protein
structure.

For α protein structure are favorable the presence of
isoleucine and threonine, for β  protein structure serine
and proline, for α + β protein structure alanine, leucine
and tryptophan, and for α /β protein structure aspartic acid
and aspargine. There is some disagreement with reference
[4] and future investigations must confirm or infirm these
results.

Conclusions
Despite the fact that several methods were developed

for protein secondary-structure prediction, there are no

Table 4
PERCENTAGE CONTRIBUTION TO VARIANCE

consensuses of their results. Here was proposed a new,
original method to investigate the influence of the number
of amino acids and the percentage contents in the twenty
amino acids  to predict protein secondary-structure,
respectively  Monte Carlo simulation using a multilayer
neural networks. The corresponding results are not strong
consistent, especially because a small data base was used,
but the method is very promising in connection with the
use of large data bases. Accurate secondary-structure
prediction is a key element in the prediction of tertiary
structure, in all but the simplest (homology modeling)
cases.
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